
Volume Renderer
For use with MATLAB R©

Documentation
Version 1.0

Raphael Schmitt
schmittr@cs.uni-freiburg.de

14.07.2012

Acknowledgments

This software was developed as a student project at

Albert-Ludwigs-University Freiburg im Breisgau
Department of Computer Science
Chair of Pattern Recognition and Image Processing.
Image Analysis Group

This project was supervised by Benjamin Ummenhofer and Junior-Prof. Dr.
Olaf Ronneberger. Herewith, I thank my supervisors for the patience and
support.

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Structure of this work . 2

2 Background 3
2.1 Rendering Equation . 3

2.1.1 Emission . 5
2.1.2 Absorption . 6
2.1.3 Discretization . 6

2.2 Rendering Pipeline . 7
2.2.1 Sampling . 7
2.2.2 Illumination . 8
2.2.3 Compositing . 8

2.3 Stereo Render . 10
2.3.1 Off-axis . 10

3 Implementation 13
3.1 Architecture . 13
3.2 Ray casting . 14
3.3 Memory Management . 15
3.4 Illumination Model Interface 17
3.5 MATLAB R© Interface . 19

3.5.1 Handle Superclass . 19
3.5.2 LightSource . 21
3.5.3 Volume . 21
3.5.4 VolumeRender . 23

4 Conclusion and Future Work 27
4.1 Conclusion . 27

ii

4.2 Future Work . 28

A Matlab Examples 29
A.1 Movie of a rotating Object . 30
A.2 Movie of a rotating Light Source 31
A.3 Rendering of two Objects . 32

Notice

ALL FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOC-
UMENTS (TOGETHER AND SEPARATELY, ”MATERIALS”) OF THE
AUTHORS ARE BEING PROVIDED ”AS IS”. THE AUTHORS MAKE
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTH-
ERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Tademarks

NVIDIA, CUDA, and the NVIDIA logo are trademarks or registered trade-
marks of NVIDIA Corporation in the United States and other countries.
MATLAB is a registered trademark of The MathWorks, Inc. Other com-
pany and product names may be trademarks of the respective companies
with which they are associated.

Copyright

As the program consists of an open source and a closed source part, the
usage of two licenses is required. The open source part is published under
New BSD License:

Copyright c©2012, Raphael Schmitt
All rights reserved.

Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the doc-
umentation and/or other materials provided with the distribution.

3. Neither the name of Raphael Schmitt nor the names of its contribu-
tors may be used to endorse or promote products derived from this

software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLD-
ERS AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The closed source part of the provided software is published under the
following license:

Copyright c©2012 by Raphael Schmitt
All rights reserved.

Redistribution and use of the software, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

2. No names of contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

3. The project has to be non-commercial in which this softare is used.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLD-
ERS AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Chapter 1

Introduction

In medical and biological research volumetric data sets are commonly used.
They are recorded by imaging methods like X-rays, magnetic resonance
imaging and 3D microscopy. To deal with complex 3D data, 2D projections
are often used for analysis and visualization. This mapping from 3D to 2D is
done via a render process. This process uses a common ray casting approach
that ends up with a 2D view of the 3D volume. To offer a physically plausi-
ble view and multiple possible perspectives several manipulation processes
are necessary.
In order to handle all the data efficiently, programs like MATLAB R© have
been developed. MATLAB R© provides an interface with its own script-
language offering optimized functions for vector calculation. In older ver-
sions, many of these operations are still computed on the CPU. Since vector
computation is in many cases very convenient for a high parallelization, a
computation on the GPU can offer much more performance compared to
the CPU. In addition, the resolution of volumetric data will successively
increase in future. Thus, fast algorithms to manipulate and handle these
data are of utmost importance.

1

1.1 Contribution

In this project we built an efficient MATLAB R© offline render command that
handles 3D volumetric data. To guarantee fast computations the render
process computes on the GPU. Due to restricted GPU memory and the
requirement to render more than one volume in one scene, we developed a
special memory management to enable the rendering of huge data sets in
separate rendering passes. Afterward these separately rendered images are
combined to one image using MATLAB R© . Additionally we developed a
generic illumination model that is easy to extend with other illumination
functions.
What is more, in some use cases there is a nice feature to work with stereo
images. Thus, our renderer offers the possibility to render off-axis stereo
images.
To enable a high usability we developed a MATLAB R© interface consisting
of several MATLAB R© classes that is easy to use. Due to this interface it is
uncomplicated to generate movies.

1.2 Structure of this work

In Chapter 2 we explain the theory on which Volume Renderer is based.
This includes the rendering equation and the rendering pipline with all its
components.
Furthermore, we introduce our architecture and implementation details in
Chapter 3 and go into detail in the following sections. There we explain our
memory management in Section 3.3 and our illumination model interface in
Section 3.4.
Section 3.5 explains how the MATLAB R© interface is designed. Moreover,
we explain all its properties and options. Only small examples are given
here. For more detailed code examples you should take a look at Appendix
A.
In the end, in Chapter 4 we discuss our result and suggest some future work.

2

Chapter 2

Background

In this chapter we explain the theoretical background of the renderer. First
the rendering equation is introduced and discretized. Section 2.2 explains
how the rendering pipeline is working. Its operations sampling, illumination
and compositing are introduced as well. Finally, in Section 2.3 we explain
the theoretical background of stereo rendering.

2.1 Rendering Equation

There are two methods to render a volume: indirect and direct volume ren-
dering (see Figure 2.1).
Indirect rendering is used to render the isosurface of a volume. First the
generation of an intermediate representation of the data set is required (e.g.
a polygonal representation of an isosurface generated by Marching Cubes
[7]). The second step is the rendering of this representation. In a polygonal
representation only a limited number of the 3D data set directly contributes
to the 2D output. The interior of the volume is not considered.
Since in biological or medical application the interior is of utmost impor-
tance, for our application we use direct rendering [6]. Direct rendering
techniques do not need the generation of an intermediate representation
of the data set, since every voxel contributes to the resulting 2D image.
To increase the realism of the rendering process, we use a model that takes

3

Figure 2.1: This illustration shows a CT scan of a bonsai. The leafs are
visualized by direct rendering whereas the trunk and the branches are visu-
alized using an isosurface rendering. Obviously in the direct rendering each
voxel contributes to the resulting 2D image. (Source: [11])

4

Figure 2.2: This illustration shows the 4 main steps of the rendering process:
(1) ray intersection (2) sampling (3) shading and (4) compositing. As our
renderer uses a simplified model, we neglect the attenuation of light on the
path from the light source to an enlighted particle. What is more we neglect
the attenuation of light from the volume to the camera as well. (Source:
[14])

emission and absorption into account. In this model every particle emits and
absorbs light. The combination of all these properties maintains following
rendering equation. We use a simplified version of the equation introduced
by [8]:

I(D) =
∫ D

0
g(s) · e

(
−

∫ D

s
τ(t)dt

)
ds

=
∫ D

0
g(s) · t(s)ds

(2.1)

This equation integrates from 0, the edge of the volume, to D at the eye.
I(D) describes the value of accumulated light intensity of one ray traversing
the volume. τ(t) is the absorption at t and g(s) is the sampled value at s.
In fact, the equation consists of two main terms: g(s) denotes emission and
t(s) the transparency at point s.

2.1.1 Emission

In general the emission part of the used model described in Section 2.1
assumes that each particle of the volume denotes a tiny light source. Thus,

5

even if no external light source is applied, the volume can emit a several
amount of light. This behavior is motivated by the application:

1. We model self-luminous particles. This occurs during fluorescence mi-
croscopy, as certain proteins glow.

2. The particle is illuminated by a light source. This leads to a better
spatial impression.

In the used model this light is not scattered. What is more, we neglect
the attenuation of light on the path from the light source to an enlighted
particle. What is more, we neglect the attenuation of light from the volume
to the camera as well. This is not completely physically correct but enables
a simple model and thus a high computational performance. Figure 2.2
illustrates this simplification.

2.1.2 Absorption

In our case absorption describes the attenuation of light. Eq. 2.2 describes
the transparency between point s and the eye. If we assume a transparency
of t ∈ [0..1] we can simply reformulate this transparency such that it becomes
opacity by α(s) = 1− τ(s).

t(s) = e

(
−

∫ D

s
τ(t)dt

)
ds (2.2)

2.1.3 Discretization

Since Eq. 2.1 cannot be solved analytically for all interpolation methods,
to obtain a general discretization one has to solve it numerically. This can
be easily done by the Riemann sum and a fixed step size ∆s. The step size
scales the current sampling position along the ray. More precisely, the ray
gets divided into n equal segments, each of size ∆s [8].

6

t(s) = e

(
−

∫ D

s
τ(t)dt

)
ds ≈ e

(∑n

i=i+1 τ(k·∆t)∆t
)

=
n∏

j=i+1
e(τ(k·∆t)∆t)

=
n∏

j=i+1
tj

(2.3)

Thus, we end up with the discretized rendering equation that approxi-
mates Eq. 2.1:

I(D) =
∫ D

0
g(s) · e

(
−

∫ D

s
τ(t)dt

)
ds

≈
n∑
i=1

g(i ·∆s)∆s ·
n∏

j=i+1
tj

=
n∑
i=1

gi ·
n∏

j=i+1
tj

(2.4)

2.2 Rendering Pipeline

The rendering pipeline defines the order of the operations that are processed
to compute the discretized rendering equation.
Our renderer uses the three operations sampling, illumination and composit-
ing that are explained more precisely in the following sections.

2.2.1 Sampling

As described in Section 2.1.3 the ray is divided into n equal segments. This
transformation of a continuous ray to discretized volume intersection lo-
cations is called sampling. To perform good quality, the discretized ray

7

positions are interpolated. What is more, in order to avoid artifacts, the
sampling rate should be twice as high as the grid resolution [12].
Each image pixel is computed by one ray. A ray passes through the center
of its corresponding pixel.

2.2.2 Illumination

To improve the realism of the rendered scene we provide an interface for
local illumination techniques. This interface is documented in Section 3.4.
We decided to use the Henyey-Greenstein phase function [3].

HG(θ, g) = 1
4π ·

(1− g2)
[1 + g2 − 2g · cos(θ)]3/2

(2.5)

HG behaves physically more correct than other shading functions like e.g.
Blinn-Phong [1] but is also computationally inexpensive. Figure 2.3 depicts
the function for several g.
At each sample position this function is evaluated locally. This illumination
model ignores scattering as well as diffusion. Any interaction with other
particles are neglected and the light arrives unextenuated at the sample
point.

2.2.3 Compositing

Compositing denotes the accumulation of the sampled, illuminated and col-
ored values along the ray to a coherent result. Therefore, in this case we use
the discretized rendering equation we explained in the previous section.
One can reformulate Eq. 2.4 and use the basic compositing over-operator

8

Figure 2.3: Henyey-Greenstein phase function with different g.

introduced by [10]:

I(D) =
n∑
i=1

gi ·
n∏

j=i+1
tj

= gn + tn(gn−1 + tt−1(gn−2 + tn−2(gn−3 + · · · (g1 + t0 · I0) · · ·)))

= gn over (gn−1 over (gn−2 over (gn−3 over · · · (g1 over 0) · · ·)))
(2.6)

Since our samples are sorted in front-to-back order our renderer uses
the under-operator. Combined with alpha compositing this yields to the
following equations [4]:

ĉi = (1− α̂i−1)ci + ci−1,

α̂i = (1− α̂i−1)αi + αi−1,

(2.7)

where ĉi and α̂i denotes the accumulated color including the illumination
and opacity as described in Section 2.1.2. Besides front-to-back compositing
has the advantage, that the ray can be stopped if a given threshold (of

9

Figure 2.4: In the toe-in camera setup both cameras have the same focal
point. (Source: [2])

transparency) is reached.

2.3 Stereo Render

There are many possibilities for a stereo rendering setup. Some of these
approaches do not produce correct results.
Toe-in is easy to implement. Since in this projection the two stereo cam-
eras are pointing to the same focal point, a rotation of the object suffices
to render the two images. Unfortunately, one suffers from vertical parallax.
The higher the distance to the center of the projection plane, the more this
effect occurs. Thus this approach does not result in correct stereo images.
Figure 2.4 illustrates this rendering setup.

2.3.1 Off-axis

Off-axis is the correct projection. No vertical parallax is introduced. Both
cameras have a different focal point (see Figure 2.5). The viewing directions
are parallel. Thus it is necessary to render two images with different cam-
era view frustums. As we can see in Figure 2.6 the two extended camera
frustums do not overlap completely. To obtain the off-axis projection plane

10

Figure 2.5: The correct off-axis stereo camera setup. (Source: [2])

of both images, one has to trim the projection of the extended frustums.
Therefore, one has to compute the non-overlapping amount of pixels δ [2]:

δ = b · w
2 · fo · tan(α2) , (2.8)

where w is the image width in pixel and fo is the focal length. b is
the stereo base, i.e. half of camera x-offset. The angle of view α can be
computed as follows:

α = 2 · arctan(d

2 · fo
)

= 2 · arctan(1
fo

)
(2.9)

where d is the width of the normalized image plane. In our case d = 2
because the range of the normalized image plain goes from -1 to 1.
If now a stereo image of resolution w x h is rendered, first this resolution
will be extended by δ. Then the left and right images with a resolution of
(w + δ) x h are rendered. Finally, to obtain the off-axis projection plane
both images are trimmed respectively to w x h again.

11

Figure 2.6: The extended frustums are depicted. To obtain the offaxis pro-
jection plane one has to trim the projection plane of each extended frustrum.
(Source: [2])

12

Chapter 3

Implementation

In the following sections implementation details are introduced. In Section
3.1 we explain the choice of the used hard and software and give an overview
of how the different components work together. Furthermore we illustrate
the ray casting. This includes the memory management and the illumination
model interface. For the latter we also show an example in Section 3.4.
Finally, in Section 3.5 we introduce the MATLAB R© interface that enables
an easy handling of the renderer.

3.1 Architecture

To obtain a high computational performance we decide to use the NVIDIA
CUDA toolkit as it provides an interface for highly parallelized computa-
tion on GPU. Since CUDA is only available for NVIDIA devices, we are
restricted in the choice of the graphic card. Moreover, due to some features
we use in our code compute capability 2.0 is required that was introduced
with the Fermi architecture by NVIDIA .
CUDA provides a special CUDA -C compiler. This GPU device code can
easily be connected to the host (CPU) C++ code. The host code pro-
vides some data structures and functions that handle the communication
between host and device. Using the MATLAB R© mex-interface we built a
MATLAB R© command. For this purpose, MATLAB R© provides a special

13

compiler, that translates all the compiled C object files into a MATLAB R©

command. As the MATLAB R© command requires a lot of parameters we de-
veloped some wrapper classes with special properties to make the handling
more comfortable.

3.2 Ray casting

Ray casting describes the process of shooting rays starting from the viewer/
camera through the volume. If a ray intersects the volume, an accumulated
light intensity is determined while traversing the volume as explained in
Section 2.2. For each ray a test is performed if it intersects the volume. As
we only provide the opportunity to render one object per rendering pass, this
test is only performed once for each ray. As [15] introduces a fast intersection
test approach that also performs well if there is only one intersection per
ray, we decided to implement a slightly simplified version of this algorithm.
In our case of only one intersection test per ray we omit complex data
structures.
Moreover, we defined the origin of the world coordinate frame in the middle
of the volume. A scalar d describes the distance to the volume. Through
this, the camera is moved along the negative z-axis to its position. The
distance between projection plane and camera is defined to 1. What is
more, the focal length fo can be customized. With a rotation matrix R we
can now rotate the camera around the object. Figure 3.1 depicts such a
example scene.
The projection plane is defined in normalized coordinates from [−1,−1] to
[1, 1]. Each rendered pixel value is determined by one ray. Thus, we have
to project the respective x and y coordinate of the ray to the normalized
projection plane coordinates u and v.
With all these information, we can compute the direction of a ray and its

14

x

y

z
Camera

Figure 3.1: Projection of a volume onto the projection plane. The blue
dashed line depicts the distance to volume. Additionally the eight rays of
the object’s corners are drawn.

position with

dirray = u · ~x+ v · ~y + fo · ~z
||u · ~x+ v · ~y + fo · ~z||

posray = co · ~x+ (−1) · d · ~z
(3.1)

~x, ~y and ~z are the particular column vectors of the rotation matrix. co is
the camera x-offset that can be defined by the user.
Since we are computing on the GPU each ray can be computed by one
CUDA thread, i.e. each pixel of the rendered image is computed by one
thread. Thus, we obtain a highly parallelized rendering program.

3.3 Memory Management

GPU memory is very limited and not extendable. Usually our renderer
requires six different volumes: one for emission, one for absorption, one
for reflection and one for each gradient direction. If all these volumes are
copied to the GPU this might lead to a high memory consumption. In some
cases these volumes can be similar or they differ only by a scalar factor.
E.g. one can have an emission volume volem and an absorption volume
volab = α · volem. Due to the texture mapping NVIDIA CUDA provides
to perform efficient lookups, it is possible to map one volume to multiple

15

α · refvolref texref

β · abvolab texab

γ · emvolem texem

∇x,y,z

~nvol∇

GPU
memory

texture
mapping result

Figure 3.2: In order to save GPU memory one volume can be mapped to
multiple textures. Additionally, the gradient can be computed on the fly.
Thus, it is possible to setup the renderer with only one volume. This can
be required if one would render a high-resolution volume. α, β and γ are
scalar multiplicators that can be defined to adjust the looked up values.

textures [9]. This enables us to map volem to texab. To provide the possi-
bility that the looked up value is multiplied by a scalar factor, the renderer
is enabled to setup one scalar multiplicator for the emission, absorption and
reflection volume. To be able to save more GPU memory one can setup
the renderer to compute the gradient on the fly. As expected this is com-
putationally more expensive, especially if a movie sequence of one scene is
rendered. Figure 3.2 shows the possible options.
The illumination volume and the light sources are copied to the GPU mem-
ory as well. As described in Section 2.1 every particle denotes a tiny light
source, it is also possible to run the renderer without any light source.

16

3.4 Illumination Model Interface

In order to provide a maximum of freedom for the illumination model, we
use a 3D lookup table.
The lookup table describes the interaction of a particle with a light source
as depicted in Figure 3.3. Since we know where the light source and the
view point are located, the vector of the incoming light ~Li and the vector
of the outgoing light ~Lo are known. ~Lo equals the view direction. The
normal vector ~n is approximated by the negative gradient. As described in
Section 3.3 the gradient is either determined by vol∇ or computed on the
fly using the finite difference scheme. With this information α and β can be
computed.
γ is the angle between ~L′i and ~L′o, the projections of ~Li and ~Lo onto the
surface plane. We can compute these projected vectors as follows:

~L′i = ~Lp − 〈~Li, ~n〉~Li
~L′o = ~Vp − 〈~Lo, ~n〉~Lo

(3.2)

where ~Lp is the position of the light source and ~Cp is the ~Vp is the view
point.
After the calculation of these angles the light intensity can be established
by performing a look up. Since the LUT contains only a finite number of
entries, linear interpolation is applied. The underlying LUT can be built up
with a lot of illumination models. In the next section we present an example
of how to build such a LUT.

Example: Henyey-Greenstein

As introduced in Section 2.2.2 our renderer uses the Henyey-Greenstein
phase function to compute the light intensity.

HG(θ, g) = 1
4π ·

(1− g2)
[1 + g2 − 2g · cos(θ)]3/2

(3.3)

The LUT is built up with the angles α, β and γ. Unfortunately, θ is the

17

~n
~Li

~L′i

~Lo

~L′o

γ

α β

Figure 3.3: The angles α, β and γ suffice to describe the whole illumination
scene. ~Li is the vector of incoming light and ~Lo is the vector of outgoing
light towards the viewer. ~L′i and ~L′o are the projections of these vectors onto
the surface plane.

angle between ~Li and ~Lo. Thus we have to compute θ for each α, β and γ.
In order to compute the LUT we choose

~Lo =

sin(α)
sin(α)

1

 , ~Li =

sin(β)
sin(β)

1

 with ||~Lo|| = ||~Li|| = 1 (3.4)

while α and β are iterated respectively dependend on the resolution of
the LUT. To perform the rotation around the surface normal we build a
rotation matrix R around the surface normal dependend on γ. Because
of the properties of the unit circle that we are working with, the rotation
matrix is around the x-axis. ~Li is kept fix while ~Lo is rotated. Now γ can
be computed by using the dot-product:

~rot = ~Lo ·R,

γ = 〈 ~rot, ~Li〉.
(3.5)

18

Because the three angles are iterated, we end up in a three time nested
loop. To obtain high performance we decided to implement the computation
of the LUT in C++ and connected this to MATLAB R© . Thus we provide a
fast computation of this LUT via a MATLAB R© command. The parameters
are the resolution of the LUT and g (see Eq. 3.3). As mentioned before, the
LUT contains only a finite number of entries. Thus, during a lookup linear
interpolation is applied.

3.5 MATLAB R© Interface

The compiled MATLAB R© command does take a lot of input parameters.
Thus, we decided to write some wrapper classes. In the following sections
we explain the design of these classes and how this interface works.
Figure 3.4 shows the inheritance and relations of the MATLAB R© classes
we provide and use. In the flollowig chapter these classes are described in
UML like notation. Since MATLAB R© does not have a strict type system,
we are checking types manually in the setter functions of the appropriate
attribute. To provide a short writing we define a few just for notation. Table
3.1 explains these types in the meaning of MATLAB R© data types. Code
examples are listed in Appendix A.
Important: All vectors are given by [level, row, column]. Apart from
ElementSizeUm, all extents of distances and positions are relative to the
world coordinate frame.

3.5.1 Handle Superclass

The realization of the memory management described in Section 3.3 requires
some special techniques on the part of MATLAB R© . Usually a MATLAB R©

class member work with call by value. But since we require the possibility
to check the pointer of the volumes, call by reference is necessary. More
precisely, on the C++ side we want to check if the volumes are pointing
to different pointer adresses or to the same one. Consequently only the
unique volume data are copied to the GPU whereas the other assignments

19

notation type matlab meaning

scalar a scalar value of size [1,1]

vec2 2D row vector of size [1,2]

vec3 3D row vector of size [1,3]

m3x3 a 3x3 matrix

array2 a 2D matrix of userdefined extent,
such as an greyscale 2D image

array3 a 3D matrix of userdefined ex-
tent such as a volumetric data set
(greyscale) or a RGB image

array4 a 4D matrix of userdefined extent
such as image sequence of RGB im-
ages. 4th component is time.

X[] this denotes a vec2 with data of
type X

Table 3.1: Types for notation and its MATLAB R© meaning.

LightSource Volume VolumeRender

handle

Figure 3.4: To provide call by reference instead of call by value Volume and
VolumeRender inherit handle. Additionally, the assignment of members
does not return a deep copy of the object. Since, LightSource does only
consume low memory it does not inherit handle.

20

are realized by texture mapping to the assigned volume data. For us this
seemed to be the most user friendly way to implement our memory model.
Fortunately, MATLAB R© offers the possibility for call by reference. A class
that inherits from the special handle superclass automatically uses call by
reference instead of call by value [13]. Hence, the class Volume inherits
handle. Through this, all properties stored in a Volume object are pointer.
What is more, a regular value assignment through a setter can be expensive,
since the old object is replaced by the new one. This new object is finally
returned.

1 methods
2 f unc t i on obj=s e t . SomeValue (obj , newValue) % Value c l a s s
3 end

This is a regular member of a MATLAB R© value class. The modified obj
with the new assigned value is returned. In case of huge data this could be
very inefficient. Handle classes are not required to return any object:

1 methods
2 f unc t i on s e t . SomeValue (obj , newValue) % Handle c l a s s
3 end

As the volumetric data can be large we decided to derive the class Vol-
umeRender from handle, as well. Figure 3.4 illustrates the class hierarchy
of the classes of MATLAB R© interface.

3.5.2 LightSource

A light source typically consists of a color, a position and an intensity. We
model the color and intensity in one property. Thus, the property Color of
the class LightSource denotes the color intensity. Figure 3.5 illustrates the
class LightSource as an UML class diagram.

3.5.3 Volume

The class Volume has only Data as property (see Figure 3.6).
Moreover, as described in Section 3.5.1, Volume inherits handle. Thus, the
memory management described in Section 3.3 can be easily realized. But

21

LightSource

+ Color : vec3
+ Position : vec3

+ set.Color : LightSource
+ set.Position : LightSource

Figure 3.5: Class diagram of class LightSource.

be careful of the behavior of a handle subclass. If we built a volume with
some data and then change the value of data outside the object, the data
inside the object also will change. The following code example shows this
behavior.

1 data =1;
2 vol1=Volume (data) ;
3 vol2=Volume (data) ;
4

5 data =2; % a s s i g n new value
6 d i s p l a y (vo l1 . Data) ; % w i l l now d i s p l a y 2
7 d i s p l a y (vo l2 . Data) ; % w i l l a l s o d i s p l a y 2

The reason for this behavior is that vol1.Data as well as vol2.Data is
a pointer to data. If we construct multiple volumes with exactly the same
data, they share this pointer. The next example code also shows a behavior
of which we have to pay attention.

1 vol1=Volume (1) ; % c r e a t e volume
2 vol2=vol1 ;
3

4 vol2 . Data=2; % a s s i g n new value
5 d i s p l a y (vo l2 . Data) ; % w i l l a l s o d i s p l a y 2

Since vol1 is a handle, the assignment vol2=vol1 does not create a deep-
copy. Consequently, the data of vol2 point to the data of vol1.
Additionally, we implemented a resize method, that resizes the data to a
given size. One can either give an vec2 for a array2 or an vec3 if Data is a
volumetric data set (array3).

22

Volume

+ Data : scalar/array2/array3

+ set.Data : void
+ resize(newsize : vec2/vec3) : void

Figure 3.6: Class diagram of class Volume.

3.5.4 VolumeRender

Figure 3.7 illustrates the class diagram of VolumeRender. As this class is
the main class of our interface it provides a lot of properties and thusly
configuration opportunities.
In the following sections we describe the features Volume Renderer provides.

Rendering

Our interface makes it easy to render a scene. It suffices to assign a emission
and absorption. The reflection volume is only required if an illumination
volume and one ore more light sources are defined. The default value of
ElementSizeUm is 1 for all dimensions and the default rotation matrix is
the identity matrix. Thus a minmal rendering code could be:

1 volume = Volume (SomeData) ; % c r e a t e volume o b j e c t
2 r ende re r = VolumeRenderer ; % c r e a t e r ende re r o b j e c t
3 r ende re r . VolumeEmission = volume ;
4 r ende re r . VolumeAbsorption = volume ;
5 render . ImageResolut ion=someResolut ion ;
6 image = rendere r . render () ; % c a l l render

In this example the camera distance to the object is 0. Thus, the camera
is inside the volume. DistanceToObject defines the distance between camera
and object. Additionally, one can define a focal length.
The object in the example code is white as this is the default color. It is
possible to change Color by a RGB row vector.
In Section 2.2.3 we introduced that the renderer uses front-to-back render-

23

VolumeRender

+ CameraXOffset : scalar
+ FocalLength : scalar
+ DistanceToObject : scalar
+ OpacityThreshold : scala
+ ElementSizeUm : vec3
+ LightSources : LightSource[]
+ Color : vec3
+ StereoOutput : string = ’red-cyan’
+ VolumeEmission : Volume
+ VolumeReflection : Volume
+ VolumeAbsorption : Volume
+ VolumeGradientX : Volume
+ VolumeGradientY : Volume
+ VolumeGradientZ : Volume
+ VolumeIllumination : Volume
+ ScaleEmission : scalar
+ ScaleReflection : scalar
+ ScaleAbsorption : scalar
+ RotationMatrix : m3x3
+ ImageResolution : vec2

+ normalizeImage(image : array3) : array3
+ normalizeSequence(imageSequence : array4) : array4
+ rotate(α : scalar, β : scalar, γ : scalar) : void
+ render(void) : array3
prender(xoffset : scalar, res : vec2) : array3
+ set.CameraXOffset(offset : scalar) : void
...

Figure 3.7: Class diagram of class VolumeRender.

24

ing as this method has the advantage that a ray can be stopped when the
accumulated alpha value does exceed a given threshold. This threshold is
given by OpacityThreshold. Its default value is 0.95.
For easy rotation, VolumeRender provides a method rotate the three angles
around the axis as parameters. γ denotes the rotation around the level axis,
β around the row axis and α around the column axis. This method rotates
the current rotation matrix respectively. The angles are given in degree.
Alternatively, one can also change the rotation matrix manually.
With this function there is the possibility to rotate the camera around the
volume with a few lines of code. Thus, one can easily create a movie.
Our renderer only renders one object per rendering pass. By a clever ma-
nipulation of the emission, absorption and reflection volumes, it is possible
to render multiple objects in seperate rendering passes and combine the ren-
dered images so that the outcome looks like one rendering pass of multiple
objects. Such complex examples like creating a movie of multiple objects
are shown in Appendix A.

Notice: Make sure that the data of absorption are >= 0!

Rendering Stereo

As in some use cases it is nice to get a 3D impression of the image our ren-
derer offers the opportunity to render off-axis stereo images. Therefore, the
renderer needs to allow to setup a camera x-axis offset, the distance between
the two stereo cameras. The theoretical background is described in Section
2.3.1.
Knowing the camera x-offset, the focal length and the image resolution we
can render two images. As explained in Section 2.3.1, to obtain an image
with a given resolution w x h we first extend the image size, then render
the two images and finally trim these images again. After the trimming we
can easily combine the two images to one stereo anaglyph image. All these
operations are done by our MATLAB R© interface. VolumeRender provides
the opportunity to assign CameraXOffset that defines the baseline of the
two stereo cameras.

25

The default value of StereoOutput is set to ’red-cyan’. Thus a 2D anaglyph
image is returened by the render call. If one requires both stereo images
separately, StereoOutput must be set to ’left-right-horizontal’. Then the re-
turned value is of type [array3, array3].

Notice: If CameraXOffset of the MATLAB R© render object is different to
0, the render-call will return automatically a stereo anaglyph image. Cam-
eraXOffset is set in voxel.
Set StereoOutput to ’left-right-horizontal’ if you need the left and right view
separately. Then the returned value is of type [array3, array3].

Normalizing

The images the renderer computes are not in the interval of 1 and 256. Thus,
we provide the method normalizeImage that does this job. Moreover we also
provide the method normalizeSequence that normalizes an image sequence
e.g. of a movie.

Notice: Applying normalizeImage to each frame of a movie sequence will
most likely result in flickering. Hence, use normalizeSequence with the whole
image sequence as input parameter.

26

Chapter 4

Conclusion and Future Work

4.1 Conclusion

With Volume Renderer we provide an offline renderer with a lot of func-
tionalities. Due to the GPU acceleration that leads to high parallelization
and the simplified render equation the runtime is kept low. Since the GPU
memory size is very limited, the memory management we designed provides
the opportunity to render big volumes.
Moreover, the render equation works with absorption and emission. Thus,
it is possible to setup the renderer that it renders multiple volumes in sep-
arated renderings in a way that the combination of these rendered images
look like rendered in one scene at the same time.
Our illumination model interface allows to use several illumination equa-
tions. Several light sources with several light color intensities can be defined.
This increases the realism of the scene and thus the spatial impression of
the scene.
The MATLAB R© interface is easy to use. Hence, one can easily construct
e.g. a movie scene. What is more, our renderer can render stereo images
and combine them to an anaglyph. Since the rendered images are float
values, the interface also provides normalization methods for both, single
images and whole images sequences. Finally we optimize the runtime of the
MATLAB R© code. Therefore, and in order to be able to realize the memory

27

management we make use of the handle class of MATLAB R© , that allows
us to use call by reference instead of call by value.
In conclusion we offer a new convenient MATLAB R© toolkit for volume ren-
dering.

4.2 Future Work

There is still some work that could be improved. To increase the realism
and spatial impression of the scene the renderer could be enabled to use
some shadowing techniques as described in [5].
Our renderer just uses linear interpolation. To get more accurate interpola-
tion values bicubic interpolation could be added as an additional option.

28

Appendix A

Matlab Examples

In the following examples we do not take into account how data is read in.
As the data are often h5 files we show one example of how a read in could
look like.

1 f i l ename =’/path/ to / data . h5 ’ ;
2 datase t = ’/ someChannel ’ ;
3 data = hdf5read (f i l ename , datase t) ; % read h5 f i l e
4

5 render = VolumeRender () ; % c r e a t e r endere r o b j e c t
6 render . ElementSizeUm = . . .
7 hdf5read (f i l ename , s t r c a t (dataset , ’ / e lement s ize um ’)) ;

In the following sections we assume, that data are already read in. Thus,
we omit the read in code.

29

A.1 Movie of a rotating Object

In this example we rotate an object around the x-axis.

1 emis s ion = Volume (data) ;
2

3 render = VolumeRender () ;
4 render . VolumeEmission = emiss ion ;
5 render . VolumeAbsorption = emiss ion ; % min value >= 0
6

7 render . ImageResolut ion = . . .
8 [s i z e (emis s ion . Data , 2) , s i z e (emis s ion . Data , 1)] ;
9

10 render . ElementSizeUm = elementSizeUm ;
11 render . DistanceToObject = 10 ;
12 render . FocalLength = 3 . 0 ; % s e t come f o c a l l ength
13 render . Color = [1 , 0 , 0] ; % s e t o b j e c t c o l o r to red
14

15 % i n i t i a l i z e rendered image
16 rendered image = . . .
17 z e r o s ([s i z e (emis s ion . Data , 2) , s i z e (emis s ion . Data , 1) , 3 , 3 6 0]) ;
18

19 % #frames
20 nSteps =50;
21 ang le = 360/ nSteps ;
22 f o r i =1: nSteps
23 render . r o t a t e (0 , 0 , ang le) ; % r o t a t e around x−a x i s
24 rendered image (: , : , : , i) = render . render () ;
25 end
26

27 % normal ize movie frames
28 normalizedImages = . . .
29 VolumeRender . normal izeSequence (rendered image) ;
30

31 % c r e a t e and show movie
32 mov = immovie (normalizedImages) ;
33 movie (mov) ;

30

A.2 Movie of a rotating Light Source

In this example we set up three different light sources. One of these light
sources (blue light) rotates around the y-axis.

1 emis s ion = Volume (data) ;
2

3 render = VolumeRender () ;
4 render . VolumeEmission = emiss ion ;
5 render . VolumeAbsorption = emiss ion ; % min value >= 0
6

7 render . ImageResolut ion = . . .
8 [s i z e (emis s ion . Data , 2) , s i z e (emis s ion . Data , 1)] ;
9

10 render . ElementSizeUm = elementSizeUm ;
11 render . DistanceToObject = 10 ;
12 render . FocalLength = 3 . 0 ; % s e t come f o c a l l ength
13 render . Color = [1 , 1 , 1] ; % s e t o b j e c t c o l o r to white
14

15 % bui ld i l l u m i n a t i o n model (Henyey−Greenste in)
16 render . VolumeIl luminat ion=Volume (HG(64)) ;
17

18 % setup 3 d i f f e r e n t l i g h t sour c e s (pos / c o l o r)
19 render . L ightSources = [LightSource ([0 , 0 , 1] , [0 . 5 , 0 , 0]) , . . .
20 LightSource ([0 , 0 , −1] , [0 , 0 . 5 , 0]) , . . .
21 LightSource ([−1 ,0 , 0] , [0 , 0 , 0 . 5])] ;
22 % #frames
23 nSteps =50;
24 ang le = 360/ nSteps ;
25 f o r i =1: nSteps
26 % r o t a t i o n matrix
27 RotationY = [cosd (beta) ,0 , s ind (beta) ;
28 0 , 1 , 0 ;
29 −s i n (beta) ,0 , cos (beta)] ;
30

31 % r o t a t e l i g h t source
32 render . L ightSources (3) . Po s i t i on = . . .
33 (RotationY∗ render . L ightSources (3) . Pos i t ion ’) ;
34 rendered image (: , : , : , i) = render . render () ;
35 end
36

31

37 % normal ize movie frames
38 normalizedImages = . . .
39 VolumeRender . normal izeSequence (rendered image) ;
40

41 % c r e a t e and show movie
42 mov = immovie (normalizedImages) ;
43 movie (mov) ;

A.3 Rendering of two Objects

This example shows how to render two objects. This example can easily be
adapted to more objects. In the following example we render two volumes
by additively combining their absorption. The depth impression of both
objects.

1 emiss ion1 = Volume (data1) ;
2 emiss ion2 = Volume (data2) ;
3

4 render = VolumeRender () ;
5 render . ElementSizeUm = elementSizeUm ;
6 render . DistanceToObject = 10 ;
7 render . FocalLength = 3 . 0 ; % s e t come f o c a l l ength
8

9 render . ImageResolut ion = . . .
10 [s i z e (emiss ion1 . Data , 2) , s i z e (emiss ion1 . Data , 1)] ;
11

12 % combine absorpt ion
13 render . VolumeAbsorption = Volume (data1 + data2) ; % min value >=

0
14

15 % setup and render f i r s t volume
16 render . VolumeEmission = emiss ion1 ;
17 render . Color = [1 , 0 , 0] ; % s e t o b j e c t c o l o r to red
18 rendered image = render . render () ;
19

20 % setup and render second volume
21 render . VolumeEmission = emiss ion2 ;
22 render . Color = [1 , 1 , 1] ; % s e t o b j e c t c o l o r to white
23 rendered image = render . render () ;

32

24 % combine the two rendered images
25 rendered image = rendered image + render . render () ;
26

27 % show normal ized image
28 imshow (VolumeRender . normalizedImage (rendered image)) ;

33

Bibliography

[1] James F. Blinn. Models of light reflection for computer synthesized
pictures. SIGGRAPH Comput. Graph., 11(2):192–198, July 1977.

[2] Paul Bourke. Calculating Stereo Pairs. http://paulbourke.net/

miscellaneous/stereographics/stereorender, July 1999. [Online;
accessed 23-June-2012].

[3] L.G. Henyey and J.L. Greenstein. Diffuse radiation in the galaxy. The
Astrophysical Journal, 93:70–83, 1941.

[4] Milan Ikits, Joe Kniss, Aaron Lefohn, and Charles Hansen. GPU GEMS
Chapter 39, Volume Rendering Techniques. Addison Wesley, 5th edi-
tion, September 2007.

[5] Milan Ikits, Joe Kniss, Aaron Lefohn, and Charles Hansen. GPU GEMS
Chapter 39, Volume Rendering Techniques. Addison Wesley, 5th edi-
tion, September 2007.

[6] Marc Levoy. Display of Surfaces from Volume Data. IEEE Computer
Graphics and Applications, 8:29–37, 1988.

[7] William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. SIGGRAPH Comput.
Graph., 21(4):163–169, August 1987.

[8] Nelson L. Max. Optical Models for Direct Volume Rendering. IEEE
Trans. Vis. Comput. Graph., 1(2):99–108, 1995.

34

http://paulbourke.net/miscellaneous/stereographics/stereorender
http://paulbourke.net/miscellaneous/stereographics/stereorender

[9] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, 2011.
Version 4.0.

[10] T. Porter and T. Duff. Compositing digital images. ACM SIGGRAPH
Computer Graphics, 18(3):253–259, 1984.

[11] Stefan Röttger, Martin Kraus, and Thomas Ertl. Hardware-accelerated
volume and isosurface rendering based on cell-projection, 2000.

[12] C. E. Shannon. Communication in the presence of noise. In Proceedings
of the Institute of Radio Engineers (IRE), volume 37, pages 10–21, 1949.

[13] Inc. The MathWorks. Object-Oriented Programming. Object-Oriented
Programming, R2011b, 2011.

[14] Wikipedia. Volume ray casting — wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Volume_ray_

casting&oldid=498233905, 2012. [Online; accessed 8-July-2012].

[15] Amy Williams, Steve Barrus, R. Keith Morley, and Peter Shirley. An
Efficient and Robust Ray-Box Intersection Algorithm. journal of graph-
ics, gpu, and game tools, 10(1):49–54, 2005.

35

http://en.wikipedia.org/w/index.php?title=Volume_ray_casting&oldid=498233905
http://en.wikipedia.org/w/index.php?title=Volume_ray_casting&oldid=498233905

	Introduction
	Contribution
	Structure of this work

	Background
	Rendering Equation
	Emission
	Absorption
	Discretization

	Rendering Pipeline
	Sampling
	Illumination
	Compositing

	Stereo Render
	Off-axis

	Implementation
	Architecture
	Ray casting
	Memory Management
	Illumination Model Interface
	MATLAB® Interface
	Handle Superclass
	LightSource
	Volume
	VolumeRender

	Conclusion and Future Work
	Conclusion
	Future Work

	Matlab Examples
	Movie of a rotating Object
	Movie of a rotating Light Source
	Rendering of two Objects

